Calculus | Packer Collegiate Institute

Implicit Differentiation, Natural Logarithms, and Tangent Lines, Oh My!

Remember to get full credit, you need to show all work, <u>clearly and neatly</u>. Remember, this isn't just about you getting the answer, but you <i>showing someone else how you got the answer.

You may use a calculator on this assessment

A. Part I: Prove that if $x = e^{y}$ (or equivalently, $y = \ln(x)$), then $\frac{dy}{dx} = \frac{1}{x}$

Part II: What is the slope of the tangent line to $y = \ln(x)$ at x = 3? If it does not exist, explain why.

Part III: What is the slope of the tangent line to $y = \ln(x^2)$ at x = -2? If it does not exist, explain why.

Skill #: Score:

B. Find the following derivatives:

$v = x^2 \ln(x)$	$y = \ln(5x^2 + 1)$
1	$\mathbf{v} = \ln(\ln(x))$
$y = \ln(\frac{1}{x^2})$	
$y = \ln(3)$	
	Skill #:
	Score:

C. Part I: What is/are the equation(s) of the tangent line(s) of $x^2 + y^2 = 25$ at x = 3?

Part II: What is/are the equation(s) of the tangent line(s) of $y^2 - x = x^3 + y$ at x = 1?

Skill #: Score: D. The relation $y^4 - y = x^3 + x$, when graphed is below. And we calculated the derivative as: $y' = \frac{3x^2 + 1}{4y^3 - 1}$

(e) Looking at the graph above, find where the tangent line is vertical. Put a dot there.

(f) Using the equation for the derivative, find the y- coordinate of the point where the tangent line is vertical.

(g) Using any method you can, can you find the x- coordinate of the point where the tangent line is vertical? (Hint: Your calculator is a great friend!)

Skill #: Score: E. Use implicit differentiation to find y':

Part I: $x^4 + y^4 = 5$

Part II: $\cos(y) + y = 5x^2$

Part III: $xy^2 = 5\sin(x) + y^2$

Part IV: $xe^{y} + x^{3} = \sin(x^{2})$

Skill #: Score:

INTEGRITY STATEMENT:

On my personal integrity, I have not given, nor received, nor witnessed any unauthorized assistance on this exam.

(signature)

If you can't sign this in good conscience, please don't. Come speak to me.